NASA Contractor Report 189716
ICASE Report No. 92-51

ICASE

STATIC ASSIGNMENT OF COMPLEX STOCHASTIC
TASKS USING STOCHASTIC MAJORIZATION

(MATA-CR=18971¢) STATIC ASSINNMENT
JT CSMPLLX STPCHASTIC TASKS USING
_) STOCHASTIC MAJURIZATION Final
David Nicol Report (1CAST) 25 p
Rahul Simha

Don Towsley

Contract Nos. NAS1-18605 and NAS1-19480
October 1992

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

T~
N

G3/61

MG3-1264012

Unclas

0129303

STATIC ASSIGNMENT OF COMPLEX STOCHASTIC TASKS
USING STOCHASTIC MAJORIZATION

David Nicol' and Rahul Simha?

Department of Computer Science
College of William and Mary
Williamsburg, VA 23185

Don Towsley

Department of Computer and Information Science
University of Massachusetts

Amherst, Mass. 01003

ABSTRACT

We consider the problem of statically assigning many tasks to a (smaller) system of homogeneous
processors, where a task’s structure is modeled as a branching process, and all tasks are assumed
to have identical behavior. We show how the theory of majorization can be used to obtain a partial
order among possible task assignments. Our results show that if the vector of numbers of tasks
assigned to each processor under one mapping is majorized by that of another mapping, then the
former mapping is better than the latter with respect to a large number of objective functions. In
particular, we show how measurements of finishing time, resource utilization, and reliability are all
captured by the theory. We also show how the theory may be applied to the problem of partitioning

a pool of processors for distribution among parallelizable tasks.

'This research was supported by the National Aeronautics and Space Administration under NASA Contract Nos.
NAS1-18605 and NAS1-19480 while the first author was in residence at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Rescarch Center, Hampton, VA 23681-000]. Research also
supported in part by NSF ASC 8819393,

®Resecarch supported by NSF NCR-8907909.

1 Introduction

Yarallel processing has emerged as an important means of achieving high computational perfor-
mance. As a consequence, much rescarch interest has been sparked in the area of efficient use of
parallel computers. The problem of assigning tasks a4mong processors to minimize processing time
has already received considerable attention in the literature, e.g., (3, 4, 8, 9, 12, 18]. We consider
the problem of statically assigning tasks to processors when the tasks have unknown random pro-
cessing times and a certain type of stochastic structure. The structure we examine embodies the
notion of one task spawning a set of others; we examine static assignments, under the assumption
that all offspring of a task are executed on the same processor as the task. Static assignient is
likely to be used when a task’s state is large, thereby making dynamic assignment very costly in
terms of communication.

This paper examines theoretical issues associated with comparing different static mappings of
a set of complex stochastic tasks. In particular, we show how the theory of majorization can be
used to derive strong results concerning the comparison of different mappings. The strength of
our contribution lies in our providing a formal underpinning to the analysis of mapping complex

stochastic tasks and to the optimization of a rich class of objective functions.

Previous work on load balancing or task assignment (3,4, 7, 8,9, 12, 18] in parallel systems
may be loosely divided into three categories. The first category, with deterministic structure,
involves task structures and execution times which are known prior to assignment. In this case
[14] includes a study of problem complexity under various constraints and heuristic algorithms for
task scheduling. A second class of load balancing formulations, in which task execution times are
random, is characterized by queueing-theoretic considerations (4, 16, 18]. Much of this work pertains
to steady-state expectations of task delays with state-dependent (4, 18] and state-independent [16]
assignment policies. Our work is closest to the third category [7, 8, 9, 13] which also takes task
execution times to be random but focuses on minimizing expected processing times for a fixed set
of tasks. As discussed in [9], the assumption of random execution times and a given set of tasks is
Justified in applications such as Monte-Carlo simulations.

Our approach to the problem differs from previous work [7, 8,9, 13] in several ways. In
this paper, we do not concern ourselves with the explicit optimization of task assignment, but
rather, with the comparison between different assignments over a wide range of possible objective
functions. Past approaches typically address the question: given K processors and m tasks with
random execution requirements, find the assignment of tasks to processors that minimizes the
expected maximum workload (or makespan). In this paper, we address a related question: given
two assignments, when can we say that one is “better” than the other, and for what class of
objective functions can we make this assertion? OQur results have a simple general form. We can

describe a mapping of probabilistically homogencous tasks to processors by a vector m, whose

ith component is the number of tasks assigned to the ith processor. Let m and m’ describe two
different mappings. Then if m can be bounded by m' using the notion of majorization [10] (written
m < m'), then for all objective functions fin a class C we may say that the assignment described

bv 1 is better than the assignment described by m'.
3 g A

The class C is often quite general, and
includes many commonly used objective functions, e.g., the expected maximum workload. We note
that an interest in inequalities or stochastic orderings can be more useful than merely searching for
optimal assignments, because such orderings may be derived in a variety of cases where it is too
expensive to search for an optimal assignment. lnequalities are also useful when constraints on the
assignient (e.g. heterogeneous memory capacity among processors) prohibit one from adopting
an otherwise obvious optimal policy. We note that stochastic orderings are of independent interest
[15] and also, in some of the cases we cousider the optimal strategy is apparent from the derived
ordering.

Our interest in obtaining stochastic orderings also stems from the observation that they are often
the only results available for small numbers of random variables and a wide variety of distributions.
Consider the fact that in [8, 9] the results are asymptotic in at least one variable n or K. In fact,
in [9], the results are only asymptotically correct in both the number of tasks n and the number
of processors K. These approaches are based on the use of the central limit theorem [8] and large
deviation theory [9], which are among the few limit results available that hold for a variety of
distributions. In contrast, our approach is concerned with finite (and possibly small) n and K and
woe make use of the theory of stochastic majorization [10]. Thus, while some of our results are not
as strong (in terms of optimality) as those obtained from fundamental limit theorems, the accuracy

of our results does not depend on the number of tasks or processors.

We now discuss other specific differences between our work and past eflorts. Our structural
model of a single task is that of a branching process: a completing process spawns a random number
of subprocesses. This type of behavior appears in diverse applications such as Branch-and-Bound
searching algorithms [2] where the branching structure is obvious, and dynamic regridding algo-
rithms in numerical computations [1] where sections of coarse grid serve as “processes” which give
rise to “subprocesses” associated with finer grids. Furthermore, our results permit the analysis of
much more complex objective functions than have typically been studied for stochastic task models.
Our model differs significantly from those in [8, 9, 12]. The tasks in [9] were taken to be individ-
nal independent and identically distributed (i.i.d.) samples drawn from a common distribution,
and synchronization behavior is that of periodic global synchronization. In [8] a complex task is
comprised of a fixed number of tasks with random i.i.d. execution times. However, the analyses
in both [9] and [8] are concerned with overheads (e.g. synchronization and communication costs)
that our model does not include. In some ways the present work resembles earlier results obtained
under the assumption that the workload assigned to a processor causes the processor to behave
as a Markov chain [13]. Like this earlier work, our new results show how the quality of a static

assignment persists across numerous stochastic transformations of the workload. The model we

study in the present paper is a distinet improvetent over that in [13], as the stochastic behavior

of a processor is now explicitly dependent on the volume of workload it contains.

Other related research Las been directed at computing the expected completion time for a
single complex task with a possibly randow acyclic structure [6, 17]. Another related publication
[[1] studies the problem of scheduling sub-tasks of a single task, where the sub-tasks form a tree,
Lastly, an analytic study of load-balancing statistically homogeneous workload on a hypercube is
presented in (7] where the mean and variance of the difference between the load on a processor
and the average load are derived. While past research has been concerned exclusively with a single
task or a given set of tasks, we also consider the Joint assignment of multiple classcs of tasks. where
tasks in different classes have different probabilistic behaviors.

Our work is based on results from the study of stochastic majorization. The fundamental theory
ol majorization originates in the economic study of income distribution- -a sort of *load” balancing.
We believe majorization finds a natural application in the area of mapping parallel workload. and
that one of our contributions is to demonstrate uses of this powerful theory in parallel processing.
In this respect our work is similar to that in [3, 19]. In [3] the focus is on a new stochastic ordering
based on the class of symmetric, convex and L-subadditive functions with applications to routing
and desiguing processor speeds. The load balancing emphasis in [3] is on scheduling structurally
stimple tasks from a quene. Majorization in steady-state queue lengths of open queueing networks is
studied in [19].in which orderings are parameterized by queue utilizations. In contrast, we use the
established orderings in [10] to obtain inequalities among all generations of complex tasks under
different static mappings of the initial tasks.

The rest of this paper is organized as follows. In the next section, we define basic notation
and present our workload model; also, we discuss the different stochastic orderings to be used
throughout the paper. Section §3 contains the fundamental orderings for workloads. Section §4
discusses various objective functions of interest in parallel systems and Section §5 applies the theory
to the problem of partitioning a pool of processors among a set of parallelizable tasks. Section §6

summarizes our work.

2 Preliminaries

We now introduce our model of computation, important definitions and known results. and a

rationale for nsing majorization to study the assignment problem.

2.1 Workload and Systenm Model

We model the workload produced by a single task as a branching process [15, pp. 116-117], as

follows. The task begins with a single work unit (WU) of computation. The WU is executed: upon

its completion a random number of other WUs are created, and placed in the task’s work list.
The initial WU can thus be thought of as containing the “geeds” for a number of additional WUs,
possibly zero, each of which similarly contain the seeds for additional WUs, and so on. One of
the first generation WUs may then be executed, and its children (which are 27 generation WUs)
spawned and placed in the task’s work list. The number of children a WU spawns is assumed to be
random, chosen from a probability distribution known as the branching distribution. The process
is repeated until the task’s work list is empty. The task workload is comprised of all computation

related to all WUs ultimately descended from the initial task WU.

We assume that the order of WU execution in no way affects the spawning of children: a WU in
the work list is destined to spawn some j children, regardless of the length of time it spends in the
list. This is easily understood if one views the WU generation as reflecting some intrinsic structural
property of the problem, e.g., the branching of a search tree. Because of this independence, every
WU belongs to some “generation” which is independent of execution order. The initial WU is in
generation 0; all children spawned by a generation 1 WU are in generation 2, and so on.

We assume that a given WU may be executed with the same constant cost on any one of K

homogeneous processors, and that every WU is executed on the same processor as is its parent.

Therefore, we map all computation associated with a task when we map the task’s initial WU.

Consider the evolution of an initial task WU. Let N, denote the number of WUs in its g-th

generation. The size of the g-th generation is given as

Nyt
Nq = Z Zjg (1)

1=1

where Ny = | and where Z;, is the number of WUs generated by the j-th WU in the (q — 1)-th
generation. We assume that {Z;,,1 < ¢ < K}92, is a sequence of independent and identically

distributed (i.i.d.) random variables (r.v.’s). The following notation will be employed:

o I the number of processors.
e 1 - the number of initial task WUs.

e m - an integer assignment vector whose it" component m; gives the number of WUs assigned

sth

to the " processor.

o N, - the size of generation g, descended from a single initial WU (when the branching

distribution is understood). For any subset A € IV, Y4 is the sum of all sizes of generations

1€ A
$a=)_ N
1EA

o fU) —the j* convolution of a probability mass fuuction f. If X is a random variable, we will

also use X) to denote a sum of j independent instances of X.

e W (m) - the random vector of generation ¢ WUs resulting from assignment vector m:

W, (m) = (N Ny,

q q

jt/L

We denote the i** component of W (m) by (W (m)).. The notation is extended to arbitrary

subsets A C IV by
Walm) = (800, sy,

The theory we develop permits us to compare different mappings under a variety of objective
functions ¢ : R™ — . Our results focus on comparing values of E[¢(W ,(m))] by deriving
conditions for inequalities involving initial task assignments m. Most of these are of the following
form: given two assignments m and m’ where m < m’ (see Definition 2.1), then E [p(W 4(m))] <
E [¢p(W 4(m'))] for all subsets A C IV, when the expectations exist.

Applicable functions ¢ include any symmetric convex function; the maximum operator, all
powers of the maximum, the sum operator, and the product operator are of particular interest.
Thus a single comparison between the assignment vectors m and m’ vectors can yield a wealth of

information about the comparative behaviors of complex stochastic tasks under the two mappings.

Our results are applicable to two different types of processor synchronization. We study gen-
erational synchronization ((GS) where processors engage in a barrier synchronization between each
WU generation. A processor executes all WUs of a given generation, say ¢, then synchronizes at
the barrier. It is not released until all processors have executed all their generation ¢ WUs and
reached the barrier. The process repeats for subsequent generations. This type of synchronization
is appropriate when the computation for a generation ¢ in one task may depend on results computed
by a generation g — 1| WU in another task. We also study termination synchronization (TS), where
a processor engages in a barrier synchronization only after the work lists of all its initial tasks are
empty. This is appropriate when the tasks are independent of each other, and the synchronization

serves only to aggregate the final results of their respective computations.

Not surprisingly, the optimal way of assigning n tasks to K processors is usually to assign n/P
to each. In the face of the obvious one may well ask why we study partial orderings. Primarily, the
theory proves the optimality with respect to a large number of objective functions, thereby lending
theoretical support to intuition. Secondly, the theory works even in the presence of constraints
that disallow the uniform assignment, and (‘0111])1icate-one’s intuition concerning optimality. For
example, memory constraints may exist that forbid one or more processors from being assigned more

than n/P tasks. The theory identifies the optimal assignment under heterogeneous constraints.

We will also apply these concepts to the issue of partitioning a pool of processors among a

set of complex parallelizable tasks. Here we’ll take K to the be number of parallelizable tasks,

and use m to describe the number of processors assigned to each. Constraints on feasible m
are easily envisaged, as the assignment may need to consider “natural” partition sizes that arise
from communication topology, or system usage at the time of the assignment. So again, while the
optimal solution to the constraint-free version of the problem may be apparent, the theory provides

a means of comparing feasible solutions.

2.2 Stochastic Ordering and Majorization

We now introduce the majorization partial ordering < using notation largely taken from [10].

Definition 2.1 (majorization) A wvector @ is majorized by vector y, written as @ < y, iff

L. Z?:l rp) < 2?21 Gk k=1,---,n—1,
20X w = X

where the notation w is taken to be the i-th largest element of x.

Definition 2.2 (Schur-convex function) A function ¢: IR* — R is said to be Schur-convez if
x <y wm R" implies p(x) < H(y) in R.

Examples of Schur-convex functions include ¢(x) = maxx; and ¢(x) = 3 g(=;), ¥V convex ¢ : R —

K.

Let Cy be the class of increasing functions from K™ onto R. The well-known stochastic ordering
between random variables [15] is defined as follows. For random vectors X and Y with distribution

functions £ and (7 respectively,

X<, Y iff /11{" #(z)dF(z) < /13" #(z)dG(z) Ve € Co

such that the integrals are well defined. Majorization over deterministic quantities is extended to

random variables in like manner by using an appropriate class of functions:

C; = Ascz}
C, = Acas}

{f: K" — R | f Schur-convex },
{f:R" — R | f convex and symmetric }.

Il

Il

These define respectively the Schur-conver partial ordering, denoted by <., and the conver sym-
metric partial ordering, denoted by <., (the notation <g, and <g, is used in [10}). Thus,
X <0 Y iff

0@ (@) < /]R #(x)dGi(z) Vo €O

and X <. Y ifl

o @M@ < [s@iicie) voec,

Note that C, C C; and thus, <,., is a stronger ordering than <.,,.

Stochastic orderings based on likclihood ratio play an especially important role in this paper.

Consider non-negative integer valued r.v.’s X and Y with probability mass functions f and g.

Definition 2.3 (likelihood ratio) X is defined to be smaller than Y in lkelihood ratio, written

as X <, Y, iff

~

(m) < f(”) 0<n<m, n,me .
g{m)

g(n)

Another important property for a probability distribution is known as increasing likelihood ratio.

Definition 2.4 (ILR) Thc non-ncgative integer valued r.v. X is said to have increasing likelihood
ratio (ILR) (and its probability mass function f is said to be ILR) iff

i+ X <pea+ X, whencver 0 < e <ey.

Next we define another class of probability mass functions, those which have tncreasing likelihood

ratio under convolution.

Definition 2.5 (ILRC) Let f be a probability mass function defined on IN. f is said to have
increasing likelihood under convolution (ILRC) iff f <,, U whenever i < 7.

ILR distributions are known to be closed under convolution, even when the number of times con-

volution is applied is random (provided the distribution of this number is also ILR) [10].
Lemma 2.1 Let f be an ILR probability mass function. Then
o f s ILRC
o Forany fired intcger k > 0, f*) 5 [LR.
o Let N obe an [ILR positive integer-valued random variable. Then fW™) s ILR.
Using these facts it is straightforward to prove the following.

Lemma 2.2 Let f be an ILR probability mass function. Then

o If [is the branching distribution for a task, then for all generations g, N, s ILR.

o For any subsct AC IN, if S4 =3 ;ca Ni has finite mean, then S4 is ILRC.

Proof: The proof of the first claim is a simple induction on g that uses closure of the ILR property

under random ILR mixtures; the proof of the second rewrites SS) as Ny + ¢;, where ¢ is the least
element of A, and ¢; < ¢; almost surely whenever ¢ < j. The result follows from Definition 2.4 and
the fact that N, is ILR.]

As we will see, the assumption of an ILR branching distribution often yields <;.. orderings.
The ILR condition is true of the discrete Uniform, Poisson, Geometric and Binomial distributions,
showing that our results apply when the branching assumes some well-known distributions.

Next we show how these stochastic orderings may be used to develop stochastic majorizations

between different static mappings.

3 Branching and Stochastic Majorization

In this section we establish conditions under which either < .5 or <, orderings can be established
between “workload” vectors under different mappings. The notion of workload will be seen to
be quite general. Throughout this section it is important to remember that the results relate to
intrinsic properties of branching behavior, and do not depend on assumptions about execution
behavior, e.g., synchronization. '

Our results for the <., ordering is based on the following theorem which is an application of
Theorem 3.J.2 in [10]. The correspondence between our form and the original is pointed out in the

Appendix.

Theorem 3.1 Let f be an ILRC probability mass function, let m = (m1,...,my) be a vector of
nonncgative integers, and for cach j = 1,..., K lct X 0%5) be @ rv. with distribution f0™). Suppose

this sct of r.ov.s is independent, and let ¢ - RY — R be a Schur-convez function. Then
Y(m) = E [p(X0),., X))
is a Schur-convez function of m.
Using Theorem 3.1 we obtain our basic <scs ordering results.

Theorem 3.2 Consider a sct of n tasks, with common ILR branching distribution f, and let m

and m’ be two mapping veetors such that m < m'. Then

e For all generations ¢, W (m) <sex W, (m').
o For any subsct A C IN such that S4 has finite mean,

W a(m) <sex W 4(m').

Proof. Lemma 2.2 shows that the distributions of N, and 54 are each ILRC; the result follows
from the definitions of W, (m) and W 4(m), and Theorem 3.1. |

Observe that the statement of Theorem 3.1 applies more generally to the notion of a random
sreward” associated with each initial WU. It states that if each initial WU earns a random ILRC
reward, aud if the reward to a processor is the sum of the rewards earned by its (independent)
WU’s, then a stochastic majorization on the rewards follows from a deterministic majorization of
the initial WUs.

Our <.y results seem to require the assumption of ILR or ILRC branching distributions.
However, by constraining our attention to syminetric convex functions we are able to obtain <cqs
orderings for completely general branching distributions. The details, which are numerous, are

developed in the Appendix. The <cqs counterpart to Theorem 3.21s

Theorem 3.3 Consider a sct of n tasks, with common nonnegative branching distribution f, and

let m and m' be two mapping vectors such that m < m'. Then

o For all gencrations q, Wo(m) <cas W, (m').
o For any subset A C IN such that S 4 has finite mean,

WA(m) <cas WA(mI)-

3.1 Heterogenous Constraints

The K-vector m,p, = (n/K, nfI,...,n/K)is majorized by any other vector whose components
are nonnegative and sum to n. Applied to the assignment problem, this shows that the obvious way
to balance workload is indeed the best, even for complex stochastic tasks. Optimality is less clear,
however, if the obvious assignment is prohibited by constraints. For each processor 7 let C'; be an
upper bound on the number of WUs the processor may be given. Such constraints might arise, for
instance, if the processors have difterent memory capacities. The obvious mapping is prohibited if
any (; < n/K. Majorization provides a way to identify the best assignment of complex stochastic

tasks even in the face of such constraints.

Consider any feasible vector Y=, yx), i < C; fori = I,..., K. Suppose there exist i
and j such that y; > y; + 1, and yi + 1 < ;. Construct a new vector x from ¥ by transfering one
unit from y; to g, ie,) = g — 1, 2y = g 41, T =y forall k # 4, 4. It is shown in [10] (5.D) that
x <y. This observation gives a rule by which we can iteratively improve a feasible solution, until

no further improvement is possible. We say a vector x resulting from this processed is balanced.

Without loss of generality assume that () S << Ck. Ttis apparent that x is balanced
if and only if whenever €j > i + 1, then z; = (;. A characterization of balanced vectors then
is that there is some index j such that i = (5 for 7 = 1,...,5, and for all l,m > j we have
|z — #,,] < 1. Furthermore, if x and y are both balanced, then this index J is the same for both
of them. It follows then that x < y and y < x, which shows the essential uniqueness of balanced

vectors. Balanced vectors are thus optimal under heterogenous constraints.

A simple O(n) algorithin will construct a balanced assignment. Assume the processors are
ordered by increasing constraint value, and initially set z; = 0, i = 1,2,..., K. We loop repeatedly
over indices 1 to K. Each pass through the loop we increment z; once, provided z; < ;. This

essentially assigns one unit to the ;% processor. We repeat the loop until all n units are assigned.

The main results of these section show that stochastic branching preserves stochastic majoriza-
tion for additive reward systems. As we have seen, useful reward systems are derived from the
generation sizes. The section to follow illustrates how these results can be fruitfully applied to

various objective functions.

4 Objective Functions

We will now establish that a number of interesting objective functions are either Schur-convex or
convex symetric functions of some notion of workload. These objective functions include finishing
time under different synchronization schemes, the space-time product, and overall reliability. This

diversity of application demonstrates the utility of the theory.

4.1 Finishing Time

One use of majorization is to show that whenever m < m/, the computation’s expected finishing
time under m is better than that under m’. This can be established using different models of
execution. For example, one easily envisions a computation where the tasks must synchronize
globally after every generation, i.e., (.S synchronization. This is typical of tasks associated with
numerical computations. If the WUs each have unit execution time, then maxi {(W,(m)),} time
is required under mapping m to execute all generation g WUs. N, can be viewed as a random
reward associated with an initial WU, thus Theorem 3.3 tells us that W,(m) <. W, (m'). The
max operator is convex and symmetric, whence £ [maxk{(Wq(m))k}] <FE [maxk{(Wq(m’))k}].

10

This same result holds true if the WU execution times are random, and i.i.d. . Since the time
between each synchronization is no larger under m than than under m/’, it follows that the overall
finishing time is no larger.

Similar results are obtained under TS synchronization, where processors synchronize only at
termination. The reward for an initial WU can be defined to be Sy, the total size of the branching
tree rooted in that WU, When the mean of the branching distribution is strictly less than one, then
E[SN] < oo. In this case, whenever m < m/, the expected maximum processor reward under m
is no larger thau under m’. Even when the branching distribution’s mean is greater than or equal
to one (but is finite) we can always assert that the time to execute all generations up through ¢ is
no greater under m than it is under m’, by defining the reward for an initial WU to be the sum of
the sizes of generations through ¢. Any symmetric convex function of the processor rewards—such

as the maximum processor reward-—yields an <., ordering.

Another metric of interest is the variation in the time to synchronize. The sample variance,

defined below, is also symmetric and convex.

SampleVar(z) = Z(:r,,- - z)?
k=1
= Z .’I:;g — z?
k=1

where & = (5" x;)/n. Thus,

SampleVar(W (m)) <cas SampleVar(W,(m'))
for any generation ¢, and

SampleVar(W g4(m)) <eqs SampleVar(W (m'))

for any A C IV such that 54 has finite mean. When the branching distribution is ILR, a similar
result holds true for the sample standard deviation (square root of variance) of time between

synchronizations, because the standard deviation is Schur-convex ([10], pp. 71).

4.2 Functions of Queue Length

When a WU completes its execution it generates its children and places them on the processor’s work
list. Following this, another WU is selected to be executed. There is thus a storage cost associated
with executing complex tasks; more generally, we show here how stochastic majorization can be
applied to objective functions based on measuring queue lengths at every time step. A simple
example of this is the computation’s total space-time product, defined as follows. Let Q(t) be the

vector enumerating the number of WUs enqueued at each processor at time t, and let T be the

11

computation’s termination time. Then the total space-tiine product is Zi‘zl ZTzO(Q(t))k. This
idea can be generalized—let s(j) quantify the cost of holding j WUs in queue for one unit of time.
Then the total space-time cost with respect to s is b ST s((Q(t)),). We will show that if s
is increasing convex with s(0) = 0, and if m < m/, then under TS synchronization the expected
space-time cost with respect to s is no worse under m than it is under m'. This result is also

demonstrated for (iS5 synchronization when the branching distribution is ILR.

Under the model assumptions we have made, the probabilistic behavior of a processor’s queue is
completely independent of the queueing discipline used. We will assume that the queueing discipline
is Smallest-Generation-First (SGF): whenever a processor selects a WU for execution from its work
list, it chooses one with least generation index. For simplicity, we also assume that the execution

of a WU takes unit time.

The space-time function s(k) = k gives rise to the usual space-time product, but other space-
time cost functions are also intuitive. For example, one might have to store WU states on disk
whenever the queue length exceeds a threshold L; furthermore, once L is exceeded the cost might

be superlinear, owing to fragmentation costs. A candidate cost function would be

0 ifk<L
“”‘{(L—mwfwk>L

where ¢ > 0. The general assumptions that a space-time cost function be convex, increasing, and

zero for empty queue lists seem to us quite natural.

Our treatment of space-time costs under TS synchronization hinges on the following observa-
tion: if processor & has exactly (W (m)),, WU units in generation g, then under the SGF queueing
discipline at some point in time the processor’s queue will have ezactly (W (m)), WUs. In partic-
ular, at the instant where the first WU of generation ¢ is about to be executed, the queue consists
entirely of generation ¢ WUs, and contains all of them. We will show that the contribution to the
expected space cost made by processor k& while processing generation ¢ WUs (under SGF schedul-
ing) is an increasing convex function of (W ,(m)),, and use this fact to find a majorization on the
vector of expected contributions made by all processors while processing generation ¢ WUs. This,
in turn, will show that the total expected space-time cost under m is no worse than under m/,
when the expectations exist. This is a <., result, applicable for any branching distribution.

th WU in generation ¢ (i = 1,...,7) produces

Suppose (W, (m)), = r. The processing of the i
a random number X,; of WU units, who join the processor’s queue. The queue length at the
instant the i* WU begins execution is 7 — (1 — 1) + E;;ll Xk, j, as there were 7 work units in queue
at the point the first generation ¢ WU was executed, ¢ — 1 of them have been executed, and each

one produced a random number of generation ¢ + 1 WUs. Therefore, the conditional expected

12

space-time cost suffered during the processing of this WU is

o(i,7) = E |s(r— (1 -1) + in,j) . (2)

i=1

¢ is convex in 7, because for any convex 7 and random variable Z, the expectation E[y(a + Z))
is convex in « (assuming the expectation exists). The expected space-time cost of processing all r

members of generation ¢ on processor k is
;
. :
Cy(r) = E (i r).
=1

Finally, we claim that ('s(r) is a convex function of r. To demonstrate this it suffices to show that
Co(r+2)+Cs(r) > 2C5(r+1) forall 7. Since ¢ is convex in 7 we have ¢(J, r+2)+¢(5, 1) > 2¢(4,7+1)

for all j = 1,...r. This observation reduces the problem to a demonstration that
Hr+2,7+2)+o(r+1,r+2) 2 26(r + 1,7+ 1).

The fact that s(7) is increasing establishes that both ¢(r + 2,7+ 2) and ¢(r + 1,7 + 2) dominate

¢(r + L,r+ 1), thereby proving the convexity of C(r).

The function T4(r1,...,7K) = SR, Cy(ry) is symmetric and convex on IN¥_ because whenever
g is convex on R then l(z) = 5" g(z;) is convex on RE . Observe that T,(W ,(m)) is the random
space-time cost with respect to s and generation ¢ resulting from assignment vector m. We have

proven the following result.

Proposition 4.1 Lct s be an increasing conver function with s(0) = 0 and suppose the space cost

of holding k WUs in one processor’s qucue for one time unit s s(k). Define

K
T(W,(m)) = D Co((Wo(m)),)
k=1

to measure the space-time cost suffered while executing generation q, under the assignment given

by m. Then whenever m < m/,

o E[T,(W,(m))] < E[T(Wy(m")] for ¢=0,1,....

o The expected total space-time cost using TS synchronization is no worse under m than under

m':

T,(W,(m))] < E[Z T.(W ,(m'))] whenever the expectation ezists.
0 q=0

gk

E|

=
Il

13

The analysis of space-time costs under (IS synchronization requires more work, and the as-
sumption of an ILR branching distribution. Suppose that (Wym)), =, fork=1,...,K. The
space-time cost to processor & during the interval of time when generation ¢ WUs are executed has
two components. We have already seen the first: C(r))—the cost accumulated over the period of
length 7, while generation ¢ WUs are executed. The second component is the space-time cost suf-
fered waiting for the most heavily loaded processor to finish. If processor k generates z generation
q+1 WUs, then the space-time cost it suffers waiting at the barrier is (max;{r;} —ry)s(z). Recalling
the definition of ¢ (equation (2)) we may write the expected total space-time cost of processing

generation ¢ WUs under GS synchronization (conditioned on (Wy(m)), =ri,fork=1,...,K)as

I Ty
Gri,...,r) = Z <Z b1, 1) + (nljax{rj} —rg)o(ri + l,m,)) ,

k=1

=1

Observe that ¢(re + 1,7;) is E[s(X%))], where X is the branching random variable . G is Schur-
convex on V" a fact we show using the following characterization of Schur-convex functions on

N® (3.A.2.) in [10]).

A function @ on V! is Schur-convex if and only if ¢ is symmetric and
alry,t =1, v,) s increasing in r; > t/2
for each fixed t,73,..., 7).

Fix r3,..., 7K, and consider r; > ry. If the difference Gri+1,my—1,.. HTK)—G(r1, 7o, .. TR) s
always nonnegative, then the condition above tells us that ¢ is Schur convex. We need to examine
two cases, max;{r;} = r{, and the alternative. Assuming the former, straightforward algebra shows

that the difference is hounded from below by

Tl

S (i + 1) — bi,m)] - imu Oliyrs —)]+

i=1
(@(rr+ Lo+ 1) = @(r2,72)) = (11 = 1) ($(rg + 1, 79) = (g, 7y — 1)).

Both of the two summations above are positive, because @(i,r) increases in 7. Since ¢(7,7) is convex
in » and r; > 7y, it also follows that G, m+ 1) — (i,) > $(t,72) — ¢(¢, 75 — 1) for every i. Thus
the positive summation above dominates the negative summation, and the desired inequality will
hold if

(P 4+ 1,ry + 1) — ¢y, 13)) — (r1 —r2) (Hry + 1,7y) — d(ra, 72— 1)) >0

Since ¢(r,7) is a convex function of r, we have
ri+l—ry

dri+ L+) =o(ryr) =) (Mra+ima+d) = p(ra+i—Lry+i—1))
1=1

14

ri+l-r2

Z ((/)(T2+ 1’T2+ 1)—(f)(7‘2,7‘2))

=1
= (r —1)(d(ra + 1,rp 4+ 1) = ¢(r2,12)).

v

From this inequality we see that the desired bound will hold if (¢(ry + L,m2 + 1) — @(r2,72)) 2
(p(ry + 1,19) — ¢(ra, 72 — 1)) . The convexity of s implies that

by + Lora+ D)= d(raumy) = Els(1+ X)) —s(1+ X (r2=1)y)

E[s(X (ry) = s(X (r2 = 1))]
d(ry 4+ 1,7m3) — d(ra, 72 — 1),

(A

as needed.
The argument for the case when rq # max;{r;} is almost exactly the same, and so is omitted.

The Schur-convexity of G gives us a stochastic majorization for GS synchronization.

Proposition 4.2 Lct s be an increasing convex function with s(0) = 0, suppose the space cost
of holding k WUs in one processor’s queue for one time unit is s(k), and suppose the branching
distribution is ILR. Define

K Tk
G(r1,...,T) = Z (Z G2, i) + (max{r]} —)i+ 1 Tk)>

k=1 \:=1

to measure the space-time cost with respect to s of executing some generation g under G5 synchro-
nization, where the each processor i has r; generation q WUs. Then G s Schur-convex on N¥, so

that whenever m < m/,

o« E[GIW,(m))] < E[G(W,(m))] for ¢=0,1,....

o The ezpected total space-time cost using (15 synchronization is no worse under m than under

m':

o0

E[Z G(W 1< E[Z G(W,(m))] whenever the expectation erists.
9=0

4.3 Reliability

Yet another application of majorization is to the question of whether the hardware will successfully
execute the entire computation. We suppose that the computation “fails” if any processor having
a non-empty queue fails. Observe that this definition permits the computation to successfully

complete even if a processor dies before the entire computation is finished, provided the failing

processor is itself already finished. We will show that if the branching distribution is ILR and a
processor’s time-to-failure distribution has an increasing hazard rate function, the the probability of
failure under m is no greater than that under m’, whenever m < m’. Conversely, if the branching
distribution is ILR and the processor failure distribution has a decreasing hazard rate function, then

the reliability under m/ is better than that under m. The result is proven for TS synchronization.

Suppose that processor i’s time to failure is the random variable Z;, with an monotone hazard

rate function A(w). It is well known that
t
Pr{Z >t} = exp{—/ A(u) ds}.
0

If A(u) is nondecreasing in u, then — fot A(u) du is concave in t, which is to say that log Pr{Z > t}

is concave. Conversely, if A(u) is decreasing, then log Pr{Z > t} is convex.

It follows (3.E.1in [10]) that when A(w) increases, the product

K
Riti,...,tx) = [[Pr{Zi > t:} (3)
=1
is Schur-concave, or equivalently, that ~R(t1,...,tx) is Schur-convex. When A(u) decreases then

R(ti,...,t5) is Schur-convex.

If processor ¢ is assigned m; WUs initially, it ends up processing S}(,"‘) WUs total. This is also
processor ¢’s processing time under the assumptions of SGF scheduling, TS synchronization, and
unit execution cost per WU. Given .S'g,”') =t fori =1,..., K, equation (3) gives the probability
that every processor executes all WUs without processor failure. The unconditional probability is

obtained by taking the expectation with respect to the Joint distribution of Sy(m):
Pr{every processor executes all its WUs before failing} = E[R(SKn(m))].

Lemma 2.2 asserts that Sy is ILRC if the branching distribution is ILR. It follows from Theorem 3.1
that when A(u) is increasing, E[R(Sy(m))] is a Schur-concave function of m. This proves the

following proposition.

Proposition 4.3 Suppose the hazard rate function A(u) for the time to processor failure is increas-
ing, and supposc the branching distribution is ILR. Let y¥(m) be the probability that every processor
crecutes all its WUs without processor failure. Then under TS synchronization and SGF scheduling,

whenever m < m' we have y(m) > y(m') The inequality is reversed if A(u) is decreasing.

5 Assignment of Processor Pools

Our last application of stochastic majorization concerns a problem where a large number P of

processors are to be partitioned among a smaller number T of complex tasks. Parallel processing

16

can be applied to the tasks to accelerate execution time. We assume that a task requires that all
of its generation ¢ WUs to be executed before any of its generation i + 1 WUs are, but that all
generation ¢ WUs may be processed in parallel. As before, the overall system may use either TS

or GS synchronization.

Let g(X, m) give the time re uired by m processors to execute X WUs. We assume that g(.X,m
g g q) 1 g

is convex in m, e.g., g(X, m) = X/m, and that g(0,m) = 0.

Suppose there are K ‘nitial WUs. We may describe our assignment of n processors to these
WUs with vector m, whose ith component gives the number of processors assigned to the it" WU.

Also let N, ; denote the random number of WUs associated with generation ¢ of task i. Under GS

synchronization, the time required to complete the ¢t" generation is

Yo(m) = max{g(Ng.1,m1),9(Ng2,m2)5 - - 9Ny mK)}-

Under our assumptions, Ely,(m)]is a symmetric convex function of m (B.4 Proposition in (10}),
showing that Ely,(m)] < E[y,(m’)] whenever m < m'. It follows immediately that the overall

expected finishing time under GS synchronization is no worse under m than under m/.

Under TS synchronization the finishing time is

oo

e @)
p(m) = max{z g(Ngi,mi), .. .,Zg(Nq_I\-, mi)}-

q=0 q=0

A sum of convex functions remains convex, whence E[p(m)] is symmetric and convex in m. When
m < m' we are assured that the expected finishing time under TS synchronization is no worse

using m than it is with m'.

6 Conclusions

This paper explores the application of majorization to the problem of assigning a large number of
stochastically complex (but probabilistically identical) tasks onto a multiprocessor. Using a model
of workload based on branching processes, the theory we develop establishes a partial ordering
among possible assignment of tasks to processors. We show that the quality of an initial assignment
persists through stochastic transformations of the workload, and that the ordering can be taken
with respect to a wide range of objective functions including those measuring finishing time, space-
usage, and reliability. We also show how the theory applies to the processor partitioning problem.
The utility of the theory lies in the generality of the objective functions that can be considered, and
in the fact that optimal solutions can be identified even when constraints are placed on potential

assigninents.

17

A Appendix

In this appendix we prove some claims made earlier in the paper.

The ILRC condition upon which our <sce results depend involves the notion of totally positive
Junctions. Chapter 18 of [10] is the source for the following definition.

Definition A.1 (Totally Positive Function) Let A and B be subsets of the real line. A function
«:Ax B — R is said to be totally positive of order k, denoted TPy, if for allm, 1 < m < k and
allzy <y < ...< a,y,, Y1 <y2<...<yy (z;€ A,y; € B)

alzn,y) o o, ym)
det > 0.
(2, n - (e, Y)
We will use the following result (18.A.4.a in [1o)).

Lemma A.1 [f K s TP, and L is TP, and o is a a-finite measure, then the convolution

M(z,y) = /1\"(1,2)L(2, y)do(z)

s TF,

min{m,n}-

The relationship between total positivity and ILRC distributions is direct. Given any integer-
valued nonnegative probability mass function f we may define the function ay: N x N —[0,1]:

ay(i,z) = fO(z).
agis TPy iff
f(i)(7z)f(j)(7rz) > f(i)(771)f(j)(7z)
for all ¢ < 7, m < n. But this is equivalent to saying that f() <,) i.e., that fis ILRC.

The reason for our interest in ILRC distributions f is that their convolution functions a; satisfy

three criteria required by Theorem 3.J.2 of (10]

* ag(z,y) = 0 whenever y < 0;
* ay is totally positive of order 2;

o aj(e+z,y) = [ag(x, u)a(z,y — u)dv(u), for some measure v on N,

18

Theorem 3.J.2's conclusion is that if m = (my,....,mK) € Wl‘, @ is counting measure, and

b H{f — is Schur-convex, then

K
A(m) :/(T] esmes v)o(w) TLutw) (4)

Vi YK) j=1

is Schur-convex on NE . Theorem 3.1 is a restatement of this result, where Yu, dv(u) = 1; because

cp(mi,y) 1s a probability, we recognize that y((m)) expresses the expected value of Ay).

<45 Results

We next consider the <., ordering. Iu this case, we are able to obtain the analogue of Theorem 3.2,
save that the <. result holds for completely general branching distributions. We first must

introduce a little more terminology, and develop an intermediate result.

A random vector X = (Xq,..-, X,.) is said to have czchangeable components if the joint dis-
tribution of Xi,..., X, 18 invariant under permutations of its components. Our basic <qqs results

rest on the following observation.

Lemma A.2 Let XY be nonncgative random variables, and Z = (Z1,23) be a random vector
with nonnegative cechangeable components. Assume that X, Y and Z are independent r.v.’s and
define U = (X, Y) and V = (X +Y,0). Then

Z+U<s Z+V.

Proof. Let ¢ : Ri — R De a convex symmetric function. Define the function ¥ : Ri — R
as P(a) = El¢(Z + a)], Va € R%. Since Z has exchangeable components, 1 is also a convex

symmetric function.

Now U < V a.s. from which it follows

WU) < (V) = EpU)] < E[{(V)],
= E[NZ+U)<E[BZ+V))
= Z4U<4wwZ+V.

The result extends easily to IY.

19

Lemma A.3 Let X,Y be any nonnegative random variables, let Z — (Z1,2Z,,---, Z,) € R be a
random vector with independent components such that 2y and Z; have the same distribution. As-
sume that X, Y, and the components of Z are mutually independent and defineU = (X,Y,0, - -, 0)
and V = (X +Y,0,-- ,0). Then

24U <es Z+ V.

Proof: Let ¢: R" — R be a symmetric convex function. Now, ¢ is symmetric and convex in the
first two arguments. Therefore, we can condition the values of Z;, 3 < j < K to be z; and apply

the previous lemma to obtain

Exyz,2[0(U)|Zs = 23,--, Zc = k] < Exy,z,2,[¢(V)|Z; = z3, 0, 2K = zR]

Removal of the conditioning on Z;, 3 < j < K yields the desired result, [|

We are now prepared to prove Theorem 3.3. Let m/ be any mapping vector where there are
processors ¢, j such that mi > m}. Without loss of generality we may take i = 1 and J =2, and
let m” be the mapping vector obtained from m’ by moving one WU from processor 1 to processor
2. We will apply lemma A.2. Interpret Z,, Z, as mj-fold convolutions of initial WU rewards, X
as the convolution of my —mf ~ 1 initial WU rewards, Y as a single initia] WU reward, and each
Z;j for j > 2 as the convolution of m; initial WU workloads. The application of lemma A.3 yields
R(m") <..s R(m').

The incremental movement of a task from a heavily loaded processor to a more lightly loaded
processor corresponds to the more general notion of a “transfer” [10]. It is known that whenever
z <y, then @ can be constructed from y with a finite number of transfers, where each transformed
vector is always dominated under < by its predecessor. Consequently if m’ is a mapping vector
with m < m’, then one demonstrates that W(m) <cs W(m') through a repeated application of
Lemma A.3 to the sequence of transfers that transmute m’ into . This proves the result.

References

[1] M.J.Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential equa-
tions”, J. Comp. Phys., 53:484-512, 1984.

[2] G.Brassard and P.Bratley, Algorithmic: Theory and Practice, Prentice-Hall,Englewood Cliffs,
NJ, 1988,

(3] C-5.Chang, “A New Ordering for Stochastic Majorization: Theory and Applications”, IBM
Report R(' 16028, T.) Watson Research Center, Yorktown Heights, NY, 1990.

20

[4]

o]

[10]

(1]

[12)

[13]

V- .Chow and W.H.Kohler, “Models for Dynamic Load Balancing in a Heterogeneous Mul-

tiple Processor System”, [EEE Transactions on Computers, Vol. (-28, 1979, pp. 354-361.

M.Garey and D.Johnson, Computers and Intractability, Freeman and Company, New York,
1979.

E.Gelenbe. R.Nelson, T.Phillips and A.Tantawi, “An Approximation of the Processing Time
for a Random Graph Maodel of Parallel Computation”, Proc. Int. Conf. on Parallel Processing,

1986, pp. 691-697.

J.Hong, X.Tan and M.Chen, “IFrom Local to Global: An Analysis of Nearest Neighbour
Balancing on Hypercube™, ACM SIGMETRICS, 1989, pp. 73-82.

B.Indurkhya, H.S.Stone and L.Xi-Cheng, “Optimal Partitioning of Randomly Generated Dis-
tributed Programs”, IEEE Transactions on Software Engg.. Vol. SE-12, No. 3, March 1986,
pp. 183-495.

C P Kruskal and A.Weiss. “Allocating Independent Subtasks on Parallel Processors”, IEEE
Transactions on Softwarc Engg., Vol. SE-11, No. 10, Oct 1985, pp. 1001-1016.

AW .Marshall and LOIkin, ‘Inequalities: Theory of Majorization and Its Applications’, Aca-

demic Press, 1979,

P.Mussi and P.Nain, “Evaluation of Parallel Execution of Program Tree Structures”, ACM
SIGMETRICS, 1984, pp. T8-87.

D.M.Nicol, “Optimal Partitioning of Random Programs Across Two Processors”, [EEE
Transactions on Software Engg., Vol. 15, No. 2, Feb 1989, pp. 134-141.

.M. Nicol and J.I11.Saltz, “Dynamic Remapping of Parallel Computations with Varying Re-
source Demands”. IEEE Transactions on Computers., Vol. 37, No. 9, Sept. 1988, pp. 1073-
1087,

C.H.Papadimitriou and K.Steiglitz, “Combinatorial Optimization: Algorithms and Complex-
ity”, Prentice-Hall, 1982.

S.Ross, ‘Stochastic Process’, Wiley, 1983.

A.Tantawi and D.Towsley, “Optimal Static Load Balancing in Distributed Computer Sys-
tems”™, J. ACM, Vol. 32, 1985, pp. 445-465. '

A.Thomasian and P.F.Bay, “Analytic Queueing Network Models for Parallel Processing of
Task Systems”, IEEE Transactions on Computers, Vol. C-35, No. 12, Dec 1986, pp. 1045-
1054.

21

(18] R.R.Weber, “On the Optimal Assignment of Customers to Parallel Servers”, J. Applied Prob-
ability, Vol. 15, 1978, pp. 406-413.

[19] D.D.Yao, “Majorization and Arrangement Orderings in Open Queueing Networks™, Annals
of Operations Research, Vol. 9, 1987, pp. 531-543.

22

